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Numerical Approximations in Heat Transfer Problems and

Usage of IBM 7090 Computer For Solutions

™,
I. Introductdon

The purpose of this paper is éb furnish information necessary to
obtain numerical approximations to the solutions of certain heat transfer
problems by making use of a thermal model and related IBM 7090 computer
program developed by BBE and BCC. The solutions take the form of a time
history of temperature distribution. The problems concern heated structures
or components of quite general geometric configuration and material composi-

tion.

Material properties may be temperature dependent. Heating may
occur by convection, by radiation, or by conduction. In the case of aero-
dynamic heating, provision is made for a real gas boundary layer with auto-
matic determination of whether the flow is laminar or turbulent. The tra-

jectory and ambient atmosphere may be arbitrarily specified.

In section II, we consider a thermal model that comsists of a
lumped parameter network of thermal capacitances and conductances, This
model may be thought of as arising from the replacement of the differential
equations of keat conduction and their boundary conditions by a suitable set
of difference equations or from the replacement of a continuous heat conduc-
tion system by a corresponding lumped parameter system on the basis of physical
considerations. Our goal here is not to discuss the limitations of the lumped
parameter model*, but rather to describe the equations which govern it. 1In
the appendices we give first the details of the computations involved in the
calculation of aerodynamic heating. Next, we give a criterion to evaluate

the stability of the calculations. Then, we show the difference equations. v

In section III, we consider the specification of this model via a

very simple but complete FORTRAN control program. The existence of a certain

*For an excellent treatment of the derivation of lumped parameter heat transfer
models see Dusenberre's Numerical Analysis of Heat Flow, McGraw-Hill Book Co.,
Inc., 1949.
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set of FORTRAN-FAP subroutines in the BCC Library (Nos. 11.02.01-11.02.12) +~
then makes direct liaison between the BCC Operations Project and the user

a relatively simple matter which requires virtually no knowledge of pro-
gramming on the part of the user. The dimensional units to be used in each

case are listed in Appendix D.

Given a specific problem, one proceeds by setting up the model
along the lines indicated in section II and specifying the model along the
lines indicated in section III. 1In section IV the printout format i, dis-
cussed. Finally, a typical example is carried through in detail in section
V. The last appendix gives the limitations on the size of the program and the

estimates which are to be used in computing the machine time.

II., The Thermal Model and Its Equations

The thermal models that we consider consist of networks of thermal
capacitances and conductances. In any model, to each end point of a thermal
conductance is assigned a number from 1 to 1000 called an index. Each such
point is called an indexed point and may have assigned to it a value of
thermal capacitance or a temperature prescribed as a function of time. In
any case the temperatures which are associated with the indexed point s, for
example, are designated Ts" Similarly, the value of a thermal capacitance
associated with an indexed point r is designated Cr, and the value of a
conductance joining the indexed points r and s is designated by Krs' In
general the values of each thermal capacitance, Cs’ will be dependent on the
temperature, Ts; and the values of any thermal conductance Krs will depend on
Tr’Ts’ and time. By allowing this generality the thermal capacitances can
represent, over an extended temperature range, the thermal capacities of
pieces of solids; and the thermal conductances can represent the behavior of
the thermal conductivities of solids, of convective heat transfer, and of

thermal radiation,

Within the network at any time there will be a thermal flux between
each pair of points joined by a thermal conductance. The value of the flux,

N from r to s, for example, is given by an apparently linear relation,

Qg = Krs (Tr B Ts) * &
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The linearity of this relation is truly only apparent, since Krs may be
temperature dependent. To determine the total thermal flux,qs,into the
point s, it is necessary only to sum all the q's which have s for their

second index, This is expressed by writing

q, = :Zd 9 )

r

Further, in a short period of time 4t, the total thermal energy
into the point s is qs . At. Consequently, if s is a point with which
a thermal capacitance Cs is associated, then the change in temperature ATs
in interval At is computed by the relation
AT = % O 3)
Cs '

Here Cs is presumed to depend on the value of Ts at the beginning of the

time interval, the precise nature of this dependence will be discussed later,

If the temperatures of all indexed points are known at a time t
and if the values of the Cs and Ks are also known, then the relations (1),
(2), and (3) give the values of the temperatures of all indexed points which
have capacitances associated with them at a slightly later time (t + At).
At the remainder of the indexed points the temperatures at (t + At) are
prescribed or calculated directly as functions of time, so that by step by
step computations the temperatures can be obtained at all indexed points at

later times.

The general description of the thermal network must be completed
by prescribing the computation of the values of the conductances and capa-
citances, Of these elements the simplest in form is the thermal capacitance.
For any of these, say Cs’ the defining equation is

= 14
g = V. (pC) @
where V is a prescribed constant having the dimensions of volume, and (P(:)

is given either by a polynomial in T degree five or less or by 1nterpolating

in a table, and has the dimension of thermal capacity per unit volume.
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The thermal conductances may be of any of several types, Of

these the simplest has the form

A
. Krs = (i) ¢ krs : (5)
rs

v where A and L are the area and length respectively, and krs is a thermal
conductivity which depends on temperature. In particular, krs is given by
a polynomial of degree five or less or by interpolation in a table and is

evaluated at the average temperature, % (Tr+Ts)'

A more complicated thermal conductance is a composite of two of
the simple types just discussed joined by a "contact" conductance, Here it
is convenient to introduce two additional network points (suppose r' and s')

at ‘the ends of the contact resistance as is shown in the following diagram:
r r' s' 8

It should be noted here that the points r' and s' are not regarded
as indexed points since they are internal to a single conductance. Since
there are no lumped thermal capacitances associated with the points indexed
by r' and s', the thermal flux through each conductance must be the same as

the flux from r to s. Thus the relations are
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Together these lead to the formulation:

-1
1 1 1
Kes & "t ¥ — *x, ) (6)
rr r's s's
q q
rs rs
Tr' Tr TK__, Ts' Ts + K, )
rr 8's

Here the contact conductance Kr's' has the same form as that given by

(5) except that A/L 1is replaced by A alone. As suggested by the

diagram K__, is calculated from the mean of T_and T_,,K_, , from that
rr r r'’r's

of T, and T ,, and K , from that of T_, and T
r s s's 8 s

In order to compute the value of a composite conductance Krs’
the values of its component conductances must be known. These in turn
depend on the internal temperatures Tr' and Ts' as well as on Tr and Ts'
However, the values of Tr' and Ts' depend on Tr and Ts and the values of
the conductances. This poses an implicit non-linear problem for the com-
putation of Tr" Ts,, and the value of the composite conductance. To
solve this problem with adequate accuracy at each time step the following
iterative procedure is used. The values of Tr' and Ts, at the beginning
of the last time step and the just calculated values of '1‘r and Ts at the
end of the time step are used to compute an approximating value for the
component conductances and thus for the composite conductance. From this
value of the composite conductance, Tr’ and Ts a value of g > and thus
new values of Tr' and Ts' can be computed, These new values are then used
to recompute the values of the conductances. This procedure may be repeated
as many times as necessary in order to obtain good values of the composite

conductance and the internal temperatures.

A third type of thermal conductance that we consider arises from

thermal radiation. In this case 9, is given by

- b | b
9, OAF, F,. (T -T) (8)
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where,
O = Stefan-Boltzmann constant
A = gurface area of element in question
FA = geometric exchange factor
Fe (Tr’Ts) = net emissivity factor between element in question and

surroundings. Fé is evaluated at % (Tr’Ts)'

In this case we may write 9 in the apparently linear form

Qg = TATF, Fe(T,T) P(T,T) (T -T,)

where

P(T,T) = TO+T2T +T T°+1° .
r s r Y 8 r 8 8

In this way we may obtain Krs from the formula

K, = OAF, F (T,T) P (T,T) . (9)

Our final type of thermal conductance arises from forced convec-
tion. Here the conductance is calculated from a heat transfer coefficient

hrs and is given by

Krs = Ars hrs (10)

The heat transfer coefficient itself is calculated in a more complicated
way than any of the quantities that have been dealt with up to the present.
The details of this computation are described in Appendix A at the end of
this report. For the present it is convenient to regard it as a function
which depends on time and on the temperature Ts' In the application of a
conductance arising from aerodynamic heating in the heat transfer model one
end point, suppose r, of each such conductance has the applied temperature
Traw. The calculation of this temperature is described in Appendix A also.
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In applications in the model, the heat transfer conductances
usually occur along with conductances arising from radiation heat transfer

to the surrounding space. Here the radiation transfer has the special form

4 4
9, = oA eT) ((T= -T (11

With the conductance given in the corresponding form:
= -«
L Aso e(Ts) P ('1‘r ,Ts) (12)

here Tr°° is a temperature that corresponds to the effective temperature
of the surrounding space and e(Ts) is given in tabular form or by a poly-

nomial. T: may be defined as a function of altitude or time,

III. Specification of the Model

In this section we describe in some detail the input required by
the computer program which makes it possible for the IBM 7090 computer to

perform the vast amount of computation involved in the model of section II,

Other questions concerning the use of the program will probably
arise. Some of these questions, such as those relating to cost (Machine
Time) and the size of problem which the program is capable of handling
(Machine Storage), can be answered by referring to Appendix D, Other of
these questions will be best answered by establishing direct liaison with
BCC.

Input consists of a simple but complete FORTRAN control program
prepared by the user and a set of FORTRAN-FAP subroutines (Nos., 11.02,01-
11.02,12) available in the BCC Library., The control program must be prepared
on standard FORTRAN coding sheets which are obtainable from BCC.

There is a considerable amount of flexibility in the method of
writing the control program. For the sake of simplicity we describe a
method which requires a minimal knowledge of FORTRAN and leave it to

experience to suggest modifications.
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The structure of a typical control program is as follows:

*

CONTR@L STATEMENTS
DIMENSI@N STATEMENTS
CPMMENTS

LISTS

CALL SET

CALL TRAJ

CALL AMBATM

CALL F@RCER

CALL F@RCER

CALL F@R ALT

CALL FPR ALT

CALL AER¢

8.
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CALL RAD

CALL RAD

CALL CéM CON

CALL C¢M CON

CALL CON

CALL PLIT

CALL STEP

GO TG 1

END
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The effect of this control program is to supply the FORTRAN MONITOR and
the various subroutines with the information they require and to sequence
the machine once per time step through the subroutines in the order in

which they are called starting with statement 1,

Reference to section II and Appendix A should clarify the
physical meaning of all the parameters that occur in the various CALL state-
ments, and reference to section V should clarify the form in which they are
written on the coding sheets as well as the interplay between these para-
meters and the LISTS. The definitions of all parameters in the various
CALL statements follows:

1. CALL SET (START, STOP, TEMPIN, I, INDEX1l, Tl1l, --~, INDEXI TI)
START, STOP - Start computation at time START and stop computation at
time STOP.
TEMPIN, I, INDEX1,T1,---INDEXI,TI - All thermal capacitors are initialized
to TEMPIN, with exception of those I thermal capacitors whose indices
are listed, INDEX J is the index of the Jth exceptional thermal capacitor
which is initialized to temperature TJ.

2. CALL TRAJ (FOFXM,XM,FOFXA XA)
NOTE: The pair FOFX,X occurs in CALL TRAJ, CALL AMBATM, CALL F@R ALT,
CALL FPRCER, CALL AER@, CALL RAD, CALL C@MCPN, CALL CPN, and CALL CAP.
It 18 used to represent a function FOFX(X) in one of the following two

ways:
(1) to define FOFX(X) as the polynomial
N
FOFX(X) = Z Aixi
i=0
write N for X in the CALL statement and write the following in the
data LISTS:
FOFX(1) = AN

FOFX(2) = Ay,

FOFX(NH) = A
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(11) to define FOFX(X) as a table,write the following in the data LISTS:
X(1) = N,
X(2) = X

1
X(W1) = X
FOFX(1) = FOFX(X,)
FOFX(N) = FOFX(Xy)

The values FOFX(X) ‘aré then:defined by linear'interpolation.

in CALL AMBATM and by quadratic interpolation in all other CALL
statements,. .

FOFXM,XM - This pair represents Mach number as a function of time,
FOFXA,XA - This pair represents altitude as a function of time.

3. CALL AMBATM (FOFXTO,XTO,PO,N)

FOFXTO,XTO - This pair represents ambient temperature as a function

of altitude,

PO,N - Ambient pressure is determined by writing in the data LISTS.
PO(1) = Z, = 0
PO(2) = a
PO(3) = B,
PO(4) = ¥,
PO(5) = 22
PO(6) = c,
PO(7) = B,
PO(8) = Y,

.
.
.

PO(4N-3) =
PO(4N-2) = @
PO(4N-1) = BN
PO(4N) = Ty

where the relationship between the @, B,Y and Z are as per Equations A5
and A6 of Appendix A.
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4.

5.

6'

7.

CALL FPRCER  (INDEX,FOFX,X)

INDEX - This is the index of the thermal capacitor whose temperature

is to be set to T.

FOFX,X - This pair represents T as a function of time,

CALL FPRALT (INDEX,FOFX,X)

INDEX - This is the index of the thermal capacitor whose temperature is
to be set to T,

FOFX,X - This pair represents T as a function of altitude.

CALL AER@ (ID,I,FLONOS,FOFXLM,XLM,FOFXLP,XLP, INDEX1,GEONO1,POSNOl,~--,
INDEXI,GEONOI,POSNOTI)

ID - This is aerodynamic heat transfer block identification number.

I - This is number of thermal capacitors in this block.

FLONOS - This is list of 5 numbers which describe the flow for this block.
They should be presented in the data LISTS as follows:

FLONOS(1) = Re__
FLONOS(2) = a
FLONOS(3) = o
FLONOS(4) = C_
FLONOS(S) = G,

FOFXLM,XLM - This pair represents the ratio of local Mach number to
ambient Mach number as a function of ambient Mach number,

FOFXLP,XLP - This pair represents the ratio of local pressure to ambient
pressure as a function of ambient Mach number.

INDEXJ,GEONOJ,POSNOJ - This triple represents the index number, surface
area A, and characteristic length X respectively of the Jth thermal
capacitor in this block.

This CALL AER® format must be supplied for each heat transfer block.
CALL RAD (INDEX1,INDEX2,GEONO,FOFX,X)

INDEX1,INDEX2 - This pair represents the indices of the two thermal
capacitors which are exchanging heat by radiation.

GEONO - This is the exchange factor FA multiplied by the surface area A,
FORX,X ~ This pair represents emissivity,e, as a function of temperature.
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8.

10.

11,

12,

CALL COMCON (INDEX1,INDEX2,GEONOl,GECNO2,GEONO3,FOFX1,X1,FOFX2,X2,
FOFX3,X3)

INDEX1,INDEX2 - This pair represents the indices of the two thermal
capacitors of this composite (contact) conductance pair.

GEONO1,GEONO2 ,GEONO3 - This triple represents area to length ratio
(A/L)l, area A, and area to length ratio (A/L)2 respectively proceeding
from the thermal capacitor of INDEX1 to the thermal capacitor of INDEX2,
FOFX1,X1,FOFX2 ,X2 ,FOFX3 - These three pairs represent respectively,

the conductivities k as functions of temperature proceeding from the
thermal capacitor of INDEX1 to the thermal capacitor of INDEX2,

CALL CPN (INDEX1,INDEX2,GEONO,FOFX,X)

INDEX]1,INDEX2 - This pair represents the indices of the thermal capacitors
of this conductance pair.

. GEONO - This represents the area to length ratio A/L,

FOFX,X - -This pair represents conductivity k as a function of temperature.
CALL CAP (INDEX,GEONO,FOFX,X)

INDEX - This is the index number of this thermal capacitor.

GEONO - This is volume V. ‘

FOFX,X - This pair represents specific heat pcp as a function of
temperature,

CALL WRITE (I,TIMEl,TIME2,---,TIMEN)

I - This is the total number of complete printouts. A complete print-
out consists of all aerodynamic and trajectory information and the
temperatures on all thermal capacitors and contact surfaces which

differ from TEMPIN, Such printouts are meant for gross checks and

should be used sparingly.

TIME1,TIME2,~-~-,TIMEN, - The numbers 1,2,---,N represent the times at
which complete printout will occur,

CALL PL@T (ID,DELTEM,I, INDEX1,---,INDEXI)

ID - This is the identification number of this PL@T group.

DELTEM - A card is punched each time the temperature of the thermal
capacitor whose index is INDEX1 changes by DELTEM. The card deck result-
ing from a complete run may be sorted on ID (columns 1-4) and then tabu-
lated to obtain a printout of X-Y plotted to obtain a graph of temperature
(colums 9-12, 13-16,-~~,69-72) versus time (columns 5-8).



o

The Johns l"opt University
APPEIED PHYSICS LABORATORY 14.
Silver Spring, Maryland

I - This is the number of thermal capacitors in this PL@T group.
INDEX1,--~,INDEXI -~ 'Theselifdites. represent the indices of the

thermal capacitors whose temperatures are to be punched.
13. CALL STEP

This is a sequence instruction for the computer to re-start, timewise,

with the solution of the next set of finite difference equations.

IV, Printout Format

The sheets of printout produced in the problem run contain the
history and principal results of the analysis. Here are recorded the
capacitance temperatures designated for printout and the contact tempera-
tures that appear in those composite resistances that hiave been designated

for printout.

Whenever aerodynamic heating is included in a heat transfer model
it 1s essential tv have some record of the principal quantities which in-
fluence this mode of heat transfer, To provide this information the values
of the following quantities are provided at each printout time: missile
altitqde z, missile Mach number Mo’ ambient pressure Py» and ambient tempera-~
ture To. In addition to this, characteristic information is printed out for
each heat transfer block (CALL AER{® statement); here the recorded quantities
are the local Mach number M, local pressure p, local air temperature T,
local Reynolds number, adiabatic wall temperature T W’ and the heat transfer
coefficient normalized by replacing x, the characteristic length, by 1; {i.e,
to get h, divide the values printed out by xldf

The program also has a subroutine available which enables output
capacitance temperatures to be plotted as functions of time on BID X-Y
plotters, . The complexity of a given thermal problem, operator experience,
time available and computer budget money gvailable dictate the best use
that can be made of the program. To help clarify the discussion a sample

problem is included in the next section.
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V. EXAMPLE

Figure 1 shows a wedge type airfoil made of stainless steel #347,
It is seen that the airfoil has three webs. These webs are made of stain-
less steel #347. They are of 0.051 inch thickness. The skin thickness of
the airfoil is 0.040 inch. It is assumed in this problem that the vertex
angle of the wedge is 4 degrees and that one surface is at a fixec angle
of attack of 4 degrees with the airstream, while the other surface is in
line with the airstream., Temperature distributions are desired on all skin
surfaces and webs during a prescribed flight pattern, It is recommended
that the reader uses the FORTRAN sheets at the end of this report in order
to follow through this sample problem.

Geometry

Figures 2 and 3 show a convenient method of disecting the physical

airfoil into a lumped parameter system of capacitors.

TRAJECTORY FUNCTIONS

To define the trajectory, the altitude and free stream Mach
number are prescribed as functions of time under the TRAJECTORY FUNCTIONS
heading, page 2. They appear as functions Fl and F2.

AMBIENT ATMOSPHERE FUNCTIONS

It is seen in Appendix A, Eq. (A3), that in order to evaluate the
expression h, the local flow conditions (pressures and velocities that exist
immediately outside of the boundary layer), must be determined. These, in
turn depend on the flight trajectory of the airfoil and on the distribution
of ambient pressure and temperature with altitude. These last quantities
are referred to under the AMBIENT ATM@SPHERE FUNCTI@NS heading. Function F3
describes the variation of ambient temperature with altitude, The function
F4 describes constants to be used in the computation of ambient pressure by
functions of the form given by Eq. (A5) of Appendix A, The order of listing

these constants is as follows.

lst, list lowest altitude of the trajectory
2nd, listla
3rd, list B
4th, list y

which satisfy Eq. (A5) for ambient pressure in the lowest

to intermediate altitude range.
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5th, list an intermediate altitude of the trajectory
6th, lista

7th, list ﬁ
8th, list ¥ to high altitude range.

which satisfy Eq, (A5) for ambient pressure in the intermediate

9th, list a high altitude of the trajectory
10th, list @
11th, 1ist B
12th, list ¢

which satisfy Eq. (A5) for ambient pressure above this high
altitude

FLOW NUMBERS

As may be seen in Eq. (A3), in order to evaluate the coefficient of
convective heat transfer h, the constant Cy and the exponent G have to be
specified. The constant C; is dependent on the type of flow existing on the
surface of investigation, i.e., flat plate, duct or cone, and on the transi-
tion Reynolds number which indicates when the flow changes from laminar to
turbulent. The exponent is solely dependent on the transition Reynolds number,
Consequently, under the FL@W NUMBERS heading, the transition Reynolds number
is specified. It is followed in order, by the value of & for Reynolds number
less than or equal to the critical value, the value of @ for Reynolds number
greater than the critical value, the value Cy; for Reynolds number less or
-equal to critical, and the value of Ca for Reynolds number greater than crit:i.cal.6
.In our sample problem we consider flat plate theory in which we assume Re-1.5x10 ,
¢ = 0.5 laminar, @=0.8 turbulent, C, = 0.332 laminar, and Cq = 0.0265 turbulent.

The above constants and exponents appear as functions F5,
LOCAL FLOW

The local flow conditions are obtained by the presentation of the
ratio of local pressure, p, to the free stream pressure, Py and ratio of
local Mach number, M, to the free stream Mach number, Mo’ as functions of
free stream Mach number, Mo. In the case of elements 1, 2, 3, 4, 5 of the
airfoil it 1s assumed that the local Mach number and the local pressure are
the same as the respective free stream Mach number and free stream pressure.
Therefore, the ratio of unity appears as function F6. For the other capaci-
tances the ratios are presented in the form of polynomial functions F7 and

n n=-1 2
F8. The form M (or p) = £ (Mb) a x + a _1¥ seee 85X + a,x + a is
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used in which the coefficients ao,al
function f(Mo), closely circumscribes the discrete points M/Mo (and p/po)

s an are such that the continuous

for which experimental data is available. The ratios M/Mb and p/po can be
listed in tabular.form as functions of Mo if sufficient data points are
available. In that case, a quadratic interpolation is used between data

points.
EMISSIVITIES

Under this heading, the effective emissivity of the exterior skin
of the airfoil is listed as F9, In the sample problem it is assumed that

the emissivity remains at the constant value of 0.8 at all skin temperatures.

THERMAL CPNDUCTIVITY and THERMAL HEAT CAPACITANCE

As was indicated in Section II, the thermal properties of each
capgcitance and conductance must be specified as functions of temperature.
For the properties of this sample problem, the thermal conductivity k, and
the thermal heat capacitance pCp are listed as polynomial functions of
temperature of 1st and 3rd degree, respectively. They appear as functions
F10 and F12, respectively, on page 6 of the FORTRAN sheets. These poly-
nomials were selected by examining the proximity of the functions with the
discrete points from which they were generated. In the past, these poly-
nomials were generated on the IBM 650 computer. At present BBE has a

library of such polynomials for a great variety of metals and non-metals,

CALL SET Statement (F@RTRAN page 7)

In order for the computations to be carried out it is necessary
to specify the flight time at which to initiate the program and the flight
time at which to cease such, This appears as 0 and 100, respectively in
the CALL SET statement. This information is followed by the initial
temperature that is assigned to each capacitance. 1In the present case
this appears as 560, If there is radiation by external surfaces to space,
as in the present case, it is necessary to list the temperature that is to
be assigned to space. In the present case capacitor 1000 refers to space,
and its temperature appears as 517, If the temperature of space varies with
altitude (or flight time), it is necessary to state the initial temperature
of space in the CALL SET statement and in addition, it is necessary to list
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the variation of the space temperature either with altitude or with time.
The former would be called out by the CALL FPRALT subroutine, while the
latter by the CALL FPRCER subroutine, See parts 4 and 5 of Section III,

CALL TRAJ Statement

The CALL SET statement is followed by the CALL TRAJ statement.
The latter calls out the Mach No. Fl vs, time FIT, and altitude F2 vs.
time F2T functions.

CALL AMBATM Statement

The CALL AMBATM statement follows the CALL TRAJ statement. It
calls out the ambient temperature F3 vs, altitude F3Z functions and the
polynomial function F4 which describes the pressure as a function of
altitude. The degree of the polynomial is listed after the polynomial
function F4 in the CALL AMBATM statement. This is necessary in order for
the computer subroutine to introduce all of the polynomial coefficients into

the program run.

CALL AERp Statement

The CALL AER@ statements specify the computations for the con-
ductances and adiabatic wall temperatures which arise from aerodynamic heat-
ing. Each statement describes a heat transfe+ block, consisting of separate
conductances driven by the same adiabatic wall temperature, computed from
the same local flow conditions and reference temperature T', radiating to
the same space temperature, but having different areas, reference lengths,
and emissivities. Each block is given a block number, Blocks are numbered
in consecutive order. Adjacent to the block number in the CALL AER$ state-
ment is a number which states how many conductances are described by the
block. Next to this number the function F5 from the FL@W NUMBER heading -
appears. This is followed by the pertinent LPCAL FLOW functions F6 or F8 and
F7. It is important to note that the function describing the local Mach No.
has to be listed first, and is always followed by that function which describes
the local pressure. Again, these functions are followed by the degree of the
polynomial. Next, the most representative element - element 6, in the sense
of thickness and material properties is listed. This is followed by the
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aerodynamic surface area -~ 0,0416 ftz, and in turn by the characteristic
length - 0.1408 ft. Then elements 1, 2, 3 etc. are defined until all

elements of the heat transfer block are described.

The temperature of that capacitance which appears first in the
CALL AER@ statement, is used as the Tw in Equation A2 to evaluate T' for
the entire block. Otherwise, the order in which the capacitances are

listed within the block is of no importance.
CALL RAD

A sample page of the CALL RAD statement is shown on FPRTRAN
Sheet 8. Here, the radiation interchange between exterior skin surfaces
and space is considered. First is listed the element, then the identifica-
tion number for space, then the element surface area, In turn, the emissivity
function F9 is listed, and in turn, is followed by the degree of this poly-

nomial which is zero.
CALL C N

A sample page of the CALL C@MCON Statement is shown on F@RTRAN
Sheet 9. In the region where heat conduction from the surface elements
to the webs is considered, the composite conductance technique described
in Section II is applied. The identifying elemental numbers are listed as
1, 2, . Then, the A/L ratios are listed in the following order: first,
that A/L ratio which pertains to element 1, then a large number 1 x 109 to
make the contact resistance 0, then the A/L ratio which pertains to element
2, 1In turn, the polynomial function F10 which describes the thermal con-
ductivity of the material of element 1 and its degree are listed. This is
followed by the number 1 which is a multiplier for the large number previously
mentioned. Thus, the product is a large number and this makes the contact
resistance 0, Lastly, the polynomial function describing the thermal con-
ductivity of element 2, and its degree are, respectively, listed.

CALL CON

An illustrative sheet of the CALL C@N-statements is shown on
FORTRAN Sheet 10. The order of listing these statements should now be

apparent. The two identifying capacitance numbers are listed, and are
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followed by the A/L term, and in turn, by the function describing the
thermal conductivity, and the degree of the polynomial.

CALL CAP

An 1llustrative sheet of the CALL CAP statements is shown
FPRTRAN Sheet 11, First is listed the capacitance number, then the
volume in cu.ft.,, then the heat capacitance pCp (in the units of BTU/ft3-°R)
F12 polynomial function, and finally the degree of the polynomial.

CALL WRITE

Here are written the flight times at which the temperatures of
the capacitors is to be printed out. First, is listed the total number
of time steps 33 for which printeotut is requested, then the times at
which print-out is desired are stated, i.e., 0., 1.5, etc.

CALL PL

A subroutine exists which enables output temperatures to be
punched on cards which, in turn, may be used to obtain X-Y plots. See
part 12, Section III., This procedure is not described here as it has

been found more convenient to plot the temperatures by hand.

CALL STEP, G to 1, END

This is the information necessary for the computer to continue
timewise with the solution of the next set of finite difference equations,
and continues until the expiration of the flight time.

Results

Figure 4 shows a typical print-out page of this sample problem
with the proper identifications. Though these temperatures appear in
degrees Rankine, the program has recently been modified so that tempera-
tures now are printed out in degrees Fahrenheit, The pressure is expressed

in pounds per square foot, and the altitude is expressed in feet. The
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normalized heat transfer coefficient h' when divided by xlﬂa is expressed
in - BTU/ftz-sec-°R units. (This is the convective heat transfer coefficient h.)

The results of this problem are presented in the form of plots
of temperature as a function of distance from the leading edge at various
instants of time for both sides of the wedge. In addition, a plot of
temperature vs., time is presented across one of the webs, These plots
are shown in Figures 5, 6 and 7. It may be seen that temperature drops
occur for the surface elements close to the web, This is due to the heat

sink effect of the webs.

It is hoped that the above sample problem has sufficed in intro-
ducing the reader to the BBE-BCC heat transfer program., A more comprehen-

sive understanding will come about in the actual usage of the program.
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APPENDIX A

In the main body of this memorandum we have referred to a
calculated heat transfer coefficient and accompanying driving tempera-
ture. This appendix sets forth the manner in which these quantities

are calculated.

The heat transfer coefficients that are used are based on

a formula of the form

e Bk
r;’ (Al)

h = CgR P

in which 9: is a constant, Re is a Reynolds number, Pr is the Prandtl
number for air, k is the thermal conductivity of air, and x is a length.
In our applications we will compute these quantities from "local flow"
pressures and velocities, i,e., those which exist immediately outside the

boundary layer, and from an effective temperature T' given by the formula

T = W T, + va(1+eauz) T , (A2)

where bgs Vg » and Og are constants, M and T are local Mach number and
temperature respectively, and 'l‘w is the temperature of the surface to

which aerodynamic heat transfer takes place.

By using the perfect gas law and associated specific heat

relationships
R . gRT
C = C + £R
P v J
.y . ER - &R

the definition of Reynolds number and Prandtl number

= X

R, m
c
P = B

22,
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the Sutherland expression for the viscosity of air as a function of

temperature.
3/2
T
L T+T_ |

and the expression (A2), the values of h can b2 obtained from expression
(A1) as follows,

P vx p Vx
Re = % SRT' W
and
BC
k=P B Y g
P P Y1 J
r r
Therefore,
a a1l -a a 1-af .- P=1gRr T?
b= C (v %> @ @y [Pr@'\)]e 2 i
By collecting terms,
C
. -8 1-a a a-1 1-a, ,. -Gl . =1 vy (1
h = 52 @ n ST [P_rcr.-)] L
Now, by introducing the Sutherland expression the expression for h
becomes,
l1-a l-a
KR aa1 ) |32 cap Py (o)
b=l 3 (V) x T'HT_ S [Pr(T )] Y(T") -1 (A3)

Here C4, J, “b’ g and R are constants, p is the local pressure, v is
the local velocity, x is a length, T' is given by (A2), Tc is a
constant temperature, and 4¥is the ratio of specific heats for air. 1In
the expression (A3) it may be observed that the entire quantity within

the braces is a function of T' alone and its value 1s completely determined
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when the variations of Pr and ¥ as functions of temperature are prescribed.
Here we will calculate ¥ and Pr from approximations by fifth degree poly-

nomials over the range of interest.

In order to evaluate the expression for h, the local flow condi-
tions must be determined., These in turn depend on the trajectory of the
missile flight and on the distribution of ambient pressure and temperature
with altitude.

We will describe the variation of ambient temperature, To’ with
altitude, z, as a continuous piecewise linear function of altitude, {i.e.,
T, = 8 tkyz 2 (=1,2,°++,5), (a4)

where 51 and ki are constants, Distributions of ambient pressure, Po,
hydrostatically compatible with linear temperature distributions are of

one of two forms, either

s e (148, G-z 1% 2
P ey 1 i-1 » 254

<z< zi, (A5)
, or
= Q - ' ! < < !
Po 4 °XP [ﬁi (z zi-l) 1, 2; 4 S 23 z; . (A6)

The first is compatible with a non-constant linear temperature distribution

from z'_1 to z!, while the second corresponds to an isothermal temperature

’
distritution oier the same interval.

To define a trajectory with sufficient accuracy for most heat trans-
fer purposes the altitude z and free stream Mach number, Mo, must be prescribed
as functions of time. These are given as continuous piecewise linear func-
tions of time., Such a function is completely defined when the coordinates
are given for its initial point, for its final point, and for all "corners"

at which the slope of the function changes.
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The local flow conditions can then be obtained provided that the
ratio of the local Mach number, M, to the free stream Mach number, Mo and
the ratio of the local pressure p, to the free stream pressure, P, are
prescribed. Here we will 1list these in tabular form as functions of free

stream Mach number.or as polynomial functions of Mo'

The remainder of the local flow conditions, i.e., the local

temperature, enthalpy, and velocity are to be computed from the relations

R R

2 R_ 2
27 Ty(T) M = H(To) + 23 To Y(To) Mo

H(T) + (A7)

and
) X
v = [gRTY(@ M ], (A8)

Here H is the enthalpy and R the ''gas constant" for a pound of air and J is
the conversion factor from energy in mechanical units to energy in thermal
units, We will approximate H(T) over the range of interest by a polynomial
of fifth degree.

Returning to the expressions for the heat transfer coefficient and
T', it will be noticed that several constants have been given the subscript
@, the exponent in (Al). The purpose of this notation is to indicate that
during the course of the computations & may be changed, and along with it
the constants indexed by it. 1In particular we will change a when the local
Reynolds number exceeds a specified critical value associated with transition
from laminar to turbulent flow. The local Reynolds number is calculated

from the formulas

R = M’ (A9)
e m
- =2
P RgT (A10)
T3/2

N (A1)

where p, v, and T are local flow quantities.
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The temperature which acts as the source or driving temperature
for aerodynamic heat transfer, i.,e.,, the "adiabatic wall' temperature, is
computed on an enthalpy basis as follows:

H = H(M +r. 2T+ (1) M2 (A12)

aw a 2J

T = T (H )
aw aw,

in which r, is a recovery factor and T(H) is the function which gives air
temperature as a function of enthalpy. This last function can be approxi-

mated over the range of interest by a polynomial of degree five.
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APPENDIX B

Stability

While there is available no exact treatment of stability for the
type of equations that we consider in our heat transfer model, it is reason-
able to expect (and experimental results bear this out) that the same criterion
that is sufficlent for stability in those cases which can be treated exactly
will be suitable here. Briefly, this criterion is that the inequality,

At < H (1)

hold for all points j which have capacitance associated with them. Here,
of course, the sum is taken over all indices i which are connected to j

by non-zero capacitances.

This inequality may be given the following physical interpretation:
If the values of the conductances and capacitances in the network are calcu-
lated for any point j for the actual temperature distribution that occurs in
the model at a given time, then the time step allowable at that time is such
that even if the surrounding temperatures were set equal to zero the heat that
would flow out of Cj in the time At, i.e., ;Kij Tj

sufficient to cause the temperature Tj + ATJ to become negative. In this

At, would not be

form the criterion (Bl) may; be regtrded as an expression of the second law
of thermodynamics. In cur case the quantities Cj and Kij are functions of
temperature and are thus not known before the analysis is completed. This
means that in order to evaluate the stability of the problem, we must make

some a priori estimates of the temperature distributions that are expected.

The machine program has been set up so that if we set START time =
STOP time in the CALL SET statement a one loop computation will result and

a complete printout plus two lines:

CRITICAL INDEX Np. = TIIII

DELTIM = 0. XXXXXXXXE * XX
will be indicated., A hand computation of At for thermal capacitor IIII
should now be made with equation (Bl)., If there is more than a 10% difference
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between this hand calculated At and the DELTIM computed by the machine a

non-diagnostic error in the control program exists.

An estimate of the number of time steps required to compute from
START to STOP is furnished by

STPP-START
DELTIM



The Johns Hopkins University
APPLIED PHYSICS LABORATORY
Silver Spring, Maryland

APPENDIX C

BBE-BCC Finite Difference Heat Transfer Equations

The Fourier differential equation which expresses the rate of
flow, or flux, of heat through a given surface element in the direction
of its normal is proportional to the normal derivative of the temperature;
that is,

° - [-k g—ﬁ] aA, )

where dA is the area of the surface, and k is the conductivity., Then if
V is a volume enclosed by a surface S, the rate of gain of heat by the

volume V is

¢ = ka—Td [fjv k \/ Tdv )

where the operator§;7(read "del") is defined as
) 3 ,f .2
V- i a2 A
ax 93X, 3X,
and Y;?. k‘7T is a scalar product called the divergence of Q:7&.

But, if p is the density and Cp the specific heat of the material involved,
the rate of gain of heat is also given by

a(c)T
a(pc)T
fff (V.kVT ——aL dv=0 , %)
v

and so
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But this is true for any volume V, so the integrand itself must vanish for

every point in the material; thus we arrive at the heat equation,

9(pC )T

AVARL VAR o 2
or
> ar 3(pC T
Z 5%, [“a—x‘] " Tar ®
i i

i=1

This is a partial differential equation which governs the flow of heat by
conduction in a homogeneous or non-homogeneous, isotropic or anisotropic
medium which is free of sources and sinks. One method of approximating
Equations (5) or (6) for conduction in one-dimension is by the following
finite difference equation,

Tt,x +4x Tt:,x Tt x=Ax Tt X
k + k, |t =
1 2 2
Ax Ax

)]
I-(pCP) Tt+At,x - (pCp) TL‘x

At

where k, = £ (T

This may be showntpictorially as follows:

\Ax Axy Axg Ax| Ax | Ax
. At
2 At
5 At
t4 At
ta At
ty ™
t, x
x X X X X X,
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Here for a finite time interval At, the term AT/Ax is expressed in terms of
conditions at the beginning of the time iuterval, Therefore, this difference
equation is called a forward difference equation. (Central and backward
difference equations are also possible to construct, but will not be the

subject of this Appendix.)

It is seen that with the above equation the temperature at any
point x, can be found at a future time t+At provided only that a history of
the present temperature of the point x,and neighboring points x+Ax and
x-Ax is known. However, this equation holds only for conduction in a
medium which is free of sources and sinks. If the desired internal tempera-
ture is that of a point which is adjacent to a boundary point, i.e., point

X, next to boundary point x. , then it is necessary to know the temperature

2 1’
of point Xy at a previous time, For example, in order to evaluate the

temperature of point xz at time t3 by Equation (7), it is necessary to know

1 at time t2. This is found by rewriting

Equation (1) in the following form,

the temperature of element x

e . Zq= e & (8)

dA on
rad,
conv’
ry cont,.res,
where now refers to the heat applied at the surface of x, by convection

dA 1
and/or radiation or contact with some other medium i.e., contact resistance.

Writing Equation (8) in a finite difference form leads to the following,

(T"z’tz ) T"1’“2)
q (x,,t.,t,)) = =%k (T, x,) —= - 9)
1’71’72 ts 1 A x
rad, :
conv,
cont,res.
1f :E:q is known then the only unknown parameter in Equation (9) is Tx £
1’72
Therefore, Tx t is evaluated. It is then used in Equation (7) to evaluate
1’72
Tx at t3. If Z:q is not known, it is always expressed in a form in which
2
it is linearly dependent on Tx e Therefore, Equation (9) can still be
1°72
solved for Tx ¢ This 1linearization is somewhat demonstrated by Equations
1°72

(5), (6), (9), (10), and (12) of the text. The additional necessary information



The Johns Hopking University
APPLIED PHYSICS LABGRATORY 32,
Silver Spring, Marylend

is that in the case of a non-linear equation such as Equation (8) of the
text, the non-linear part Krs’ is always evaluated at a previous time instant,

i.e., 1n the above discussion Krs would be evaluated at tl.
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Dimensional Units

Since the quantities involved in the heat transfer calculations
involve dimensional quantities it is necessary to establish the dimensional
units. Throughout, the English system of units is used, i.e., foot, pound,
°R, BTU, etc, Time by itself is always in seconds, but when stating thermal
quantities such as conductivity we shall, for convenience, use hours.

The following table lists the units used for all quantities that
must be listed on the problem sheets or appear on the printout sheets. (Since
the completion of the included sample problem a modification has been made in
the computer program whereby temperatures are printed out in degrees Fahrenheit

rather than degrees Rankine. However, input temperatures still have to be listed

in °R.)
Table of Dimensional Units
Quantity Dimension
Initial time, to second
Initial Values °R
Time step, t second
Atmosphere:
o lb-ft-l
Bi ft
Yi non-dimensional
Zi ft
61 °R .
ki °R ft
Zi ft 5
Specific Heat, pcp BTg ft ~ °R
Volume, V ' ft
Area, A ftz
Area/Length, A/L ft
Conductivity, k BTU hr™! g7l er”!
Stefan Boltzmann constant, o BTU hr™! ft-z g™
Exponents, «a non-dimensional
Heat Transfer Constants, Ca non~dimensional
Characteristic Length, x ft
Heat transfer Coefficient, h BTU sec-1 ft-z °R-1
Temperature, T °R or °F
Geometric exchange factor, FA non~dimensional

Net emissivity factor, Fg non~dimensional
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Machine Program

Program Restrictions
(1) Thermal capacitor indices must not exceed 1000.

(2) There must be no more than 20 CALL AER@ statements.
(3) There must be no more than 500 CALL C@MCON statements,
(4) There must be no more than 50 CALL PL@T statements.
(5) There must be no more than 16 capacitors in any CALL PL@T statement.
Machine Timing

The machine time may generally be estimated by multiplying the
machine time per time step by the number of time steps required to compute
from START to STPP. (See the last part of Appendix B on how to estimate
the number of time steps.) The machine time per time step may be estimated
by multiplying the time required by each inner loop subroutine by the number

of times it is called and summing over all inner loop subroutines.

Subroutine Name Time
F@PRCER 1 milli-second
AER( 20 milli-seconds
RAD 1 milli-second
COMCHON 5 milli-seconds
CON 1 milli-second
CAP 1 milli-second

Machine storage Space Requirements

(a) It will generally prove most convenient to use BCC Library Subroutines
11.02.01-11.02.12 as a package, In the somewhat unlikely event that space

becomes a problem, the following information may be useful:

Number Name Locations
11,02,01 SET 93
11.02.02 TRAJ 40
11.02.03 AMBATM 150
11.02,04 FORCER 40
11.02,.05 AER® 670
11.02.06 RAD 85
11.02.07 COMCON 100"
11.02.08 CON 65
11.02.09 CAP 40
11.02,10 WRITE 300
11.02,11 PLAT 170
.11.02.12 STEP 140

The 11.02.01-11,02,12 package also includes BCC Library Subroutines DECIDE,
PIF1 and PIF2., The package uses 6174 CPMCON locations,
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(b) Each CALL statement in the control program requires a certain number of

locations depending on the type of CALL statement,

Type
CALL SET
CALL TRAJ
CALL AMBATM
CALL F@RCER
CALL AER®
CALL RAD
CALL CPMCON
CALL CPN
CALL CAP
CALL WRITE
CALL PLOT
CALL STEP

Locations

5+ 21
5
5
4
8 + 31

12

2+1I
4+ 1
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Wedge-type Wing Structure With Several Supporting Spar Webs

FIGURE 1.
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The Johns Hopking University

PPLIED PHYSICS BORATORY
A Caer Soring, Marviond ADDENDUM

This addendum is included in order to instruct the reader in some
parts of the Applied Physics Laboratory heat transfer program which need
particular care. The critical aspect of the information listed below has
been made evident to the BBE heat transfer section by its experience with
numerous computer analyses over the past year, The problems that may arise
in a computer program run, neglecting obvious technical errors, may be
broken into three categories:

1. Insufficient information to obtain adequate representation of data
by interpolation. This problem usually arises as a result of the

fact that with the exception of the AMBATM temperature function, all

tabular functions are interpolated by quadratic equations.

Example:
Suppose - the following altitude z is presented as a function of
time t,
2 F2(1) =0 . F2V(l) = N ,
z, F2(2) = 2 . F2v(2) = 0 . t
24 F2(3) = 10 . F2v(3) =1 ., t,
L] L] . L t3
zy F2(N) = 100000. . .
F2v(N+1) = 100. ty
where the quadratic equation
z = at2 + bt + ¢
is used.
At t = t, = 0, z, = 0 therefore ¢ = 0
at t = t2 =1, z2 = 2 therefore,
2 = a(1)2 + b(l) therefore,
b=2-a
at t = t, =2, 10 = a(? + (2-3)(2)
5=2a + 2-a
therefore, a=3 and b= -1,

and z= 3t2 - t.
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Now to find the minimum value of z in the interval tl to t differentiate

3’
z with respect to t and set equal to zero.

dz

E-Gt-l*O;
1
therefore, t = 3 s

2

1 1

and z 3 6 - 6

= - L

12 °

Since, no ambient temperatures and pressures are listed for
negative altitudes, the computer will give faulty results, Had more
altitude data been given in the time interval from tl to t3 then no
negative z values would occur in this time interval, Therefore, the
machine run would be good. 1In conclusion, be generous with data at
the beginning, at inflection points and at ends of functional values,
The best way of checking out a heat transfer program is to allow the
computer to initially make only a few seconds of flight time analysis.
That is in the START and STOP of the CALL SET statement, make START
0 éeconds and make STOP, say, 2 seconds, That way, if something is
wrong in the input information corrections can be made without wasting
much computer time.

2, Inherent limitations of convective heat transfer equations. The

T' - Colburn method of evaluating the coefficient of convective heat
transfer is best suited to free stream Mach numbers of 5 or less.
This is the method built into the Applied Physics Laboratory program.
Above Mach 5 the Van Driest method of evaluating h is more accurate.
Alsd, the equations for h must be modified for heat transfer at stagna-
tion points. ‘'This 1s because of the appearance of the characteristic
length xl'a in the denominator of the equation for h,

3. Unwise assumptions. In studies involving plastic surfaces, it must
be remembered that melting and/or ablating may take place at high
speeds. The APL program does not handle the changes in state and
geometry that may thus ensue. Therefore, computed data which may
look good on surface, may be useless if above phenomena had taken

place.
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Another condition that one must exercise care with is choosing
adequately thin elements for the representation of aerodynamic surfaces
made of fiberglass phenolics or other low conductive materials. The
temperature dbtained for the surface element is used as the wall tempera-
ture in the computation of T'. In turn, this is used in the computation
of h, For the case of low conductive materials, when the surface element
is thick, then Tw will be smaller during the ascent of a missile than if
the surface element were made thin because of the larger volume. In turn,
the coefficient of convective heat transfer will be larger. Thus, over
a finite missile ascending period of time, more heat will be supplied to
the thicker surface element. Furthermore, since the overall thickness of
the structure which is receiving aerodynamic heating is a fixed dimension,
the inner element layers will eventually have to absorb the excessive heat
supplied to the surface element. Thus, not only will the temperature of
the surface element be in error, but also the temperatures of all inner
elements. If the conductivity of the material- 1is large as in the case
of metals, then the above will not nearly be as serious. In conclusion,
for temperature gradient supporting materials, generous usage of break-up

into layers should be made in the mathematical model.
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